
Large Scale Cloud Deployment of Spectral Topic Modeling
Chris Swierczewski, Sravan Bodapati, Anurag Beniwal, David Leen

Animashree Anandkumar

Amazon Web Services

{csw,sravanb,beanurag,devileen,anima}@amazon.com

ABSTRACT
Spectral methods have been employed in a vast majority of use

cases which involve discovering the latent factors of a given distri-

bution. Topic Modeling via Latent Dirichlet Allocation (LDA) is one

such use case where the goal is to learn the underlying topics or cat-

egories from a collection of documents in an unsupervised manner.

Spectral LDA using tensor decomposition involves constructing and

decomposing a third-order tensor which can be computationally

intensive. We describe the design challenges encountered in devel-

oping this new approach to topic modeling within the SageMaker

framework, the implementation details of the spectral algorithm,

and the performance and accuracy measurements compared against

existing topic modeling software. We also show that our implemen-

tation yields atleast 10x speed improvement with a competitive

accuracy over state-of-art open source topic modeling software.

Category: Deployed

CCS CONCEPTS
• Computing methodologies→ Spectral methods;

KEYWORDS
Production ML Systems, Distributed Machine Learning, Topic Mod-

eling, Latent Dirichlet Allocation, Spectral Methods, Tensor Decom-

position

ACM Reference format:
Chris Swierczewski, Sravan Bodapati, Anurag Beniwal, David Leen Ani-

mashree Anandkumar. 2019. Large Scale Cloud Deployment of Spectral

Topic Modeling. In Proceedings of ParLearning, Anchorage, Alaska, USA,
August 2019 (ParLearning 2019), 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In this paper we describe the implementation of the Spectral LDA

algorithm as an example of developing and testing ML algorithm

on the SageMaker platform. Latent Dirichlet Allocation (LDA) is a

model used to discover a collection of latent topics describing a a

given set of documents. For example, a news article may contain

words which are typically associated with the topic of “space ex-

ploration” as well as words drawn from the topic of “government”.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ParLearning 2019, August 2019, Anchorage, Alaska, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: The major steps and components in training and deploy-
ing Spectral LDA.

Training a LDA model amounts to discovering the topics underly-

ing a given collection of documents. With a trained model in hand

one can then infer which topics occur in a given document and at

what ratios.

There exist well known algorithms for training LDA models but

they have some important limitations. The expectation maximiza-

tion (EM) method has low storage cost and is easy to implement.

Although, useful in its generality, the EM method provides no guar-

antee on convergence to a global optimum let alone any bounds

on the convergence rate. Gibbs sampling is a common alternative

to the EM approach which also has low storage cost but requires

a large amount of training data for accurate results. Both of these

techniques suffer from slow convergence rates and are not trivially

parallelizable. Additionally, they don’t offer an easy separation be-

tween the training and inference portions of the LDAmodel making

their use more restrictive, especially in a production setting.

The algorithm used in Spectral LDA, reduces the core calcula-

tions to tensor arithmetic. Tensors are a natural setting for encoding

higher order relationships in data. As in the matrix setting, tensor

algebra is parallelizable and scalable — it lies at the heart of machine

learning frameworks like MXNet and TensorFlow. Furthermore, the

Spectral LDA algorithm decouples the training and inference stages

making it more flexible. Finally, this algorithm has been proven to

converge to the global optimum [1] and has been demonstrated to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ParLearning 2019, August 2019, Anchorage, Alaska, USA
Chris Swierczewski, Sravan Bodapati, Anurag Beniwal, David Leen

Animashree Anandkumar

be an effective alternative to previous methods [10].

Summary of Deployment Challenges and Contributions

A high-performance, scalable LDA algorithm. Our imple-

mentation of Spectral LDA is 2.5x – 7x faster than MALLET, a

popular natural language processing library, in the range of topic

count that many customers are typically interested while maintain-

ing comparable topic coherence. Our gains are especially large on

corpora with long documents.

Efficient handling of large-dimensional and sparse data.
In applications with large vocabulary size it is essential to store

data in sparse format. Our implementation of the Spectral LDA

algorithm carefully handles all intermediate calculations to pre-

serve the performance and memory benefits of sparse data storage

end-to-end. Both constructing and decomposing the third-order

tensor has high computational and memory costs, especially when

the vocablary size is large. We also implemented data projection

techniques to make the algorithm scale primarily with topic count,

which in many applications is several orders of magnitude smaller

than the vocabulary size (See Section 3 for details).

Tensor operator and algorithm contributions. To achieve

the desired performance with large-scale data we contributed the

Khatri-Rao operator and a third-order tensor contraction [18] to

MXNet.We attain significant computational gains in construction of

third-order tensor by representing it in terms of third-order tensor

contraction and using other computational tricks in construction

of moment tensors (See Section 3 for details).We also improved

Tensorly’s implementation of the Alternating Least Squares algo-

rithm, used in computing the tensor Spectral decomposition, by

integrating line-search and QR-factorization optimizations.

Outline. In Section 2 we begin with an introduction to the funda-

mental concepts in LDA and tensor arithmetic culminating in tensor

decomposition, which lies at the heart of Spectral LDA. We present

an overview of the Spectral LDA algorithm in Section 3 along with

implementation details. Finally, we provide experimental results

and performance metrics in Section 4.

2 TOPIC MODELING AND TENSORS
2.1 Latent Dirichlet Allocation
LDA[2][5] is generative probabilistic model for describing discrete

data, commonly referred to as documents, as a mixture of latent

classes, referred to as topics. Given a vocabulary size V a word is

encoded as a unit vector ev ∈ RV and a document w ∈ RV is a

vector of word counts,

w =

Nw∑
n=1

wn , wn = ev for some v ∈ {1, . . . ,V }, (1)

where Nw is the length of the document. As set of K topics β =
{β1, . . . , βK } are each discrete probability distributions over the

vocabulary, βk ∈ ∆V−1
. A document’s topic mixture θ ∈ ∆K−1

is a

probability distribution over the topic space describing the ratio in

which each topic is represented within a particular document.

2.2 Spectral Decomposition
Expressing a tensor as a sum of rank-one terms in this way is

referred to as a spectral decomposition or canonical polyadic decom-
position (CPD) [7] [8].

Finally, tensors act as multilinear maps. Let T ∈
⊗p RN and

Vi ∈ R
N×Mi

for i ∈ [p]. Then the mapping,

T :

(
RN×M1 × · · · × RN×Mp

)
→ RM1×···×Mp[

T (V1, . . . ,Vp)
]
i1, ...,ip

:=
∑

j1, ..., jp
jk ∈[N]

Aj1, ..., jp (V1)j1,i1 · · · (Vp)jp,ip , (2)

is multilinear. This operation is concisely expressed in terms of the

tensor CPD,

T (V1, . . . ,Vp) =
R∑
r=1

(
VT
1
µ1,r

)
⊗ · · · ⊗

(
VT
p µp,r

)
(3)

2.3 Spectral LDA
Assume every document in a given corpus contains at least three

words and let x1,x2,x3 ∈ RV represent three documents generated

randomly from an LDA model defined by a prescribed α and β .
The connection between LDA and spectral tensor decomposition is

summarized in the following main theorem.

Theorem 2.1 ([1]). Let α0 =
∑K
k=1 αk and,

M1 = E[x1],

M2 = E[x1 ⊗ x2] −
α0

α0 + 1
M1 ⊗ M1,

M3 = E[x1 ⊗ x2 ⊗ x3]

−
α0

α0 + 2

(
E[x1 ⊗ x2 ⊗ M1] + E[x1 ⊗ M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2]

)
+

2α2
0

(α0 + 2)(α0 + 1)
M1 ⊗ M1 ⊗ M1. (4)

Then,

M2 =

K∑
k=1

αk
(α0 + 1)α0

β ⊗2k ,

M3 =

K∑
k=1

2αk
(α0 + 2)(α0 + 1)α0

β ⊗3k . (5)

That is, if we compute estimates of the moment tensorsM1,M2,

andM3 using a corpus of documentsW then the spectral decom-

position ofM3 will return estimates for the LDA model parameters

which best describe the corpus.

2.4 Whitening
Although computational details will be discussed in Section 3 it

is important to note here that the construction and decomposi-

tion of M̃3 may be unattainable in practical applications especially

when the vocabulary size is large. For example, when V = 2520

approximately 64 GB of RAM is required to store a single-precision

V ×V ×V tensor in memory. In comparison, the vocabulary size

of the NYTimes dataset, available on the UCI Machine Learning

Repository [12], is V = 102660 which would require an unrealistic

4 million GB RAM to store.

Large Scale Cloud Deployment of Spectral Topic Modeling ParLearning 2019, August 2019, Anchorage, Alaska, USA

Figure 2: Writing the scaled moment tensor M̃3 as a sum
of orthogonal rank one components. By Theorem 2.1 these
components are consist of the LDA model parameters.

To overcome this limitation we project M̃3 into R
K×K×K

using

a process called whitening [1]. Then, we determine the spectral

decomposition of the whitened tensor and project the spectral

components back up into RV to recover the LDA model parameters

α and β . Since many applications use a topic count considerably

smaller than the vocabulary size this process makes the spectral

decomposition approach to LDA computationally feasible.

The whitening matrixW ∈ RV×K
if defined as the matrix satis-

fying,

M̃2(W ,W) :=WT M̃2W = I. (6)

W can be obtained by computing the rank-k SVD M̃2 = U ΣUT

(M̃2 is symmetric), where Σ ∈ RK×K
consists of the top-k singular

values of M̃2 andU ∈ RV×K
consists of the corresponding singular

vectors. The whitening matrix is defined,

W = U Σ−1/2. (7)

In terms of the M̃3 we derive the spectral decomposition of the

whitened tensor using Equation 3,

M̃3(W ,W ,W) =

K∑
k=1

α
−1/2

k

(
α
1/2

k WT βk

)⊗3
, (8)

which can be written as,

M̃3(W ,W ,W) =

K∑
k=1

λkν
⊗3
k . (9)

Therefore, by computing the spectral decomposition of thewhitened

tensor we can recover the original spectral components,

αk = λ−2k , βk = U Σ1/2λkνk . (10)

3 IMPLEMENTATION
In this section we share the key algorithmic and implementation

details of the Spectral LDA algorithm in Amazon SageMaker frame-

work. The Spectral LDA algorithm consists of the following primary

steps described in the upcoming sections:

(1) ComputeM1 and obtain the whitening matrixW from M2

using Randomized SVD

(2) Compute the whitenedM3 tensor, M̃3

(3) Determine the spectral decomposition of M̃3 using Alternat-

ing Least Squares

(4) Recover α and β from whitened spectral components

(5) Perform inference: given a documentw ∈ RV determine the

corresponding topic-mixture θ ∈ RK .

3.1 ComputingM1 andW FromM2

The first moment tensor, M1 ∈ Rv , simply consists of the word

probabilities. Given a corpus of documents W this is estimated by

the mean of the normalized document word counts,

M1 =
1

M

∑
w ∈W

1

Nw
w . (11)

This calculation is trivially parallelizable across the corpus.

In order to obtain the whitening matrixW we need to deter-

mine the singular value decomposition (SVD) of the M2 ∈ RV×V

data tensor. However, given a matrix A ∈ RM×N
traditional SVD

algorithms require O(MN 2) time. For large vocabulary sizes this

can be prohibitive. Additionally, note that the computation time

is independent of the desired rank K < min(M,N) as well as the

sparsity of A.
To overcome this obstacle we use the randomized SVD algo-

rithm introduced in [14]. The matrix operations in RandSVD() are

amenable to distributed calculation. Please refer to the paper for

theorem and algorithm to find approximate singular vectors that

satisfy similar constraints as in the SVD algorithm.

However, in many applications we receive the input documents

X ∈ RM×V
as a sparse matrix. To compute M2 directly would

require enough memory to store a V ×V dense matrix, which in

the NYTimes dataset would be approximately 42 GB RAM. While

not strictly prohibitive this would require the largest of AWS C4

EC2 instances. Instead, we take advantage of the sparsity of X by

directly computingM2Π ∈ RV×K
from the documents, themselves,

and proceeding with the rest of the algorithm.

3.2 Constructing the Whitened M̃3 Tensor
Let w ∈ ZV be a document from a corpus of M documents, W.

Using the definition ofM3 in Theorem 2.1 we determine the con-

tribution of a given documentw ∈ W toM3. Beginning with the

component, E[x1 ⊗ x2 ⊗ x2], we can derive

E[x1 ⊗ x2 ⊗ M1](W ,W ,W)w =

1

M

1(Nw
2

)
2!

(
p ⊗ p ⊗ q −

V∑
v=1

wv Wv ⊗Wv ⊗ q

)
,

where q =WTM1 is the whitened M1 moment vector. The other

cross-terms appearing in Equation 4 are similarly derived.

Evaluating Tensor Terms. When the vocabulary size V and num-

ber of documents M are large, efficiency and parallelism is key

when constructing M̃3(W ,W ,W). Early versions of Spectral LDA

used Numpy’s einsum() function. Although easy to use we found

that einsum was slow as it doesn’t make optimal use of BLAS like

other numpy built-in functions. To achieve desired performance

we implemented a specialized tensor contraction operator in MXNet.

ParLearning 2019, August 2019, Anchorage, Alaska, USA
Chris Swierczewski, Sravan Bodapati, Anurag Beniwal, David Leen

Animashree Anandkumar

Let,

f : RM×I ×RM×J ×RM×K −→ RI×J×K

f (A,B,C) =
M∑

m=1
Am ⊗ Bm ⊗ Cm , (12)

where Am ∈ RI , Bm ∈ RJ , andCm ∈ RK , are the rows of A, B, and
C , respectively. We rewrite the terms above, when summed over

the documentsw ∈ W, in terms of f .

High-Performance Tensor Contractions. The remaining terms in

M̃3(W ,W ,W) can be similarly represented by this third-order ten-

sor contraction. For this reason, it is important that the evaluation

of f be as efficient as possible. We implemented this tensor con-

traction function as an MXNet operator, LDAContraction(), the

core logic of which is written below:

// A_t, B_t, C_t store in-memory transposes of the input
#pragma omp parallel for collapse(3) schedule(static)
for (size_t i=0; i<I; ++i)
for (size_t j=0; j<J; ++j)

for (size_t k=0; k<K; ++k)
out[i][j][k] = pairwise_sum(A_t[i], B_t[j], C_t[k]);

The first observation is that we can parallelize over the elements,

f (A,B,C)i, j,k =
M∑

m=1
Ai,mBj,mCk,m , (13)

using OpenMP. However, in doing so we introduce a cache incoher-

ent access pattern to the input matrices A, B, and C . Experiments

showed that performing an in-memory transpose of the input ma-

trices improved speed by a factor of 10x, even when including the

time needed to transpose the data, at the cost of twice the necessary

storage space.

Second, evaluating the sum for potentially large values ofM , V
introduces large floating point error. We use pairwise summation

to reduce this error toO(logM). Finally, note that this operator can

be further distributed across multiple machines using the MXNet

KVStore by splitting the document corpus or vocabulary into equal-

sized chunks, if necessary.

3.3 Computing the Spectral Decomposition
We use the Alternating Least Squares (ALS) algorithm, introduced

in [3] and [6], to compute the spectral decomposition in Equation 9.

In particular, we use an augmented version of the implementation

provided by the open-source package, Tensorly [9]. To improve

convergence rates we modified Tensorly to take advantage of two

ALS optimizations: line search [16] and QR-orthogonalization [17].

The ALS algorithm extends to arbitrary order but for the pur-

poses of this document and application we will only focus on the

third-order case when the rank is equal to the dimensions of the

tensor. Given a tensor T ∈ RK×K×K
the objective is to find the

factor matrices A,B,C ∈ RK×K
and weights λ ∈ RK such that,

argminT̂ | |T − T̂ | |, T̂ =
K∑
k=1

λk Ak ⊗ Bk ⊗ Ck , (14)

and where Ak ,Bk , and Ck denote normalized columns of the re-

spective factors. During the development of this software we added

the Khatri-Rao operator, ⊙, to MXNet [11].

Figure 3: Reconstruction error per iteration using a known
orthogonal tensor with random noise. In most cases using
both line search and QR-orthogonalization lead to higher
quality reconstructions in fewer iterations. The dashed
black line represents the L2-norm of the noise.

Unfortunately, the ALS algorithm is not guaranteed to converge

to a global optimum or even a stationary point of Equation 14. Fur-

thermore, the output factor matrices are dependent on the starting

guess [8]. Due to these limitations we run ALS() multiple times,

keeping the result achieving the smallest reconstruction error.

To address these ALS limitations we augmented the base algo-

rithmwith two improvements: line search andQR-orthogonalization.

The line-search(LS) algorithm performs a linear interpolation of

the previous two sets of factor matrices to produce an iterate inde-

pendently from ALSStep(). We then set the next ALS iterates equal

to the set of factors which produces the smallest reconstruction

error

The second improvement orthogonalizes the factor matrices via

QR decomposition before invoking ALSStep() during the first few

iterations of ALS(). When the spectral components are orthogonal,

as we expect in the LDA case, the QR-based algorithm finds better

quality local minima within the first few iterations. See Figure 3

for representative examples of the effect of these improvements on

reconstruction error as a function of iteration count.

Line search always improves the quality of solution. (At the

cost of an additional reconstruction error calculation.) In most

cases both line-search(LS) and QR lead to better quality optima in

fewer iterations. However, in cases where the latent topics are not

sufficiently orthogonal, usually due to lack of sufficient data, this is

not necessarily the case. Therefore, when running ALS() multiple

times we ensure that some of these runs do not use the QR approach.

Across experiments on noisy orthogonal tensors with dimension

K < 100 we observed an approximately one order of magnitude

smaller reconstruction error than the base algorithm output. The

impact on iteration count was difficult to measure since LS pushes

ALS out of local basins where otherwise the convergence criterion

would be met.

Large Scale Cloud Deployment of Spectral Topic Modeling ParLearning 2019, August 2019, Anchorage, Alaska, USA

Finally, the keen readerwill observe that the orthonormal columns

of the factor matrices may not necessarily represent discrete proba-

bility distributions over the vocabulary. Furthermore, note although

we expect the columns Ak ,Bk , and Ck to converge to the same

whitened spectral vector the results may be off by a sign due to the

equality, µk ⊗ µk ⊗ µk = µk ⊗ (−µk) ⊗ (−µk). Our final final step is

to identify which of the factor columns correspond to the “negative”

spectral vector and then project the unwhitened results onto the

probability simplex ∆V−1
using the efficient methods in [4].

3.4 LDA Inference
So far, our discussion in this section described the key steps in

the determination of the LDA model parameters α ∈ RK and β =
{β1, . . . , βK }, βk ∈ ∆V−1

which best describe an input document

corpusW. The final step is to use this model to infer topic mixtures

θ ∈ ∆K−1
associated with an input documentw ∈ RV .

Our implementation of spectral LDA is written to accept data in

sparse or dense CSV, JSON, and RecordIO Protobuf formats.

It can be shown that the LDA inference problem of finding opti-

mal topic distribution for a document is equivalent to maximizing

the likelihood function,

L(θ |w,α , β) :=
K∑
k=1

(αk − 1) log(θk) +
V∑
v=1

log(wT
v βθ), (15)

where in this notation β ∈ RV×K
is a matrix whose columns consist

of the topics βk . In general, L(·|w,α , β) is non-convex. It can be

made convex if we remove word degeneracies and topic degeneracies,
Our findings show that by removing word degeneracies we re-

duce any O(V) compute time contribution to O(nnz(w)): if a word

in an input document w does not occur then the corresponding

column of the topic-word matrix β does not appear in Equation

15 and can be removed. However, in application we found that

removing topics to satisfy topic non-degeneracy led to confusing

results especially in situations where the number of latent topics is

known. Therefore, we settled upon gradient descent even though

the objective function may not be convex.

We profiled several variations of the basic gradient descent algo-

rithm and by comparing the output topic-mixture results against

known synthetic data. The base algorithm performed well. We ex-

perimented with the exponentiated gradient descent method since

it has a natural application to optimizing over the probability sim-

plex. However, we found that the exponentiation of logarithmic

terms, when in many cases known θk are close to or approach 0,

resulted in numerical instability. In the end we implemented gradi-

ent descent with momentum, using hyperparameter optimization

to determine optimal learning rate and momentum parameters.

4 EXPERIMENTS AND PERFORMANCE
In this section we present performance and accuracy data from a col-

lection of experiments run on the UCIMachine Learning Repository

bag-of-words dataset [12]. In particular, we will measure algorithm

runtime on the following datasets as a function of topic count, K :

Dataset NYTimes PubMed Abstracts
Document Count (M) 300,000 1,000,000

Vocabulary Size (V) 102,660 141,043

Approx. Total Word Count 100,000,000 90,000,000

(Note that in our experiments we take a 1 million document subset
1

of the 8.2 million PubMed Abstracts document corpus.)

We compare the performance and accuracy of Spectral LDA

against the Machine Learning for Language Toolkit (MALLET)

[13]. MALLET is a popular Java package for performing a variety

of natural language processing tasks. MALLET’s topic modeling

toolkit includes a Gibbs sampling-based algorithm for training LDA

models. In each of the measurements below we ran Spectral LDA

and a Docker containerized version of MALLET on the SageMaker

platform using the a single EC2 c4.8xlarge instance type.

4.1 Running Times
MALLET’s Gibbs sampling-based algorithm does not separate train-

ing and inference. Therefore, we compared its compute time against

the sum of the Spectral LDA’s training and inference times against

the training corpus. Figure 4 shows the timing results on the NY-

Times and PubMed Abstracts datasets as a function of topic count.

The average total compute time is approximately 7x faster on the

NYTimes dataset and 2.5x faster on the PubMed Abstracts dataset.

Note that inference is approximately constant and makes up the

majority of runtime for small topic counts. This is because inference

is primarily a function of vocabulary size and nnz(w) which are

independent of the number of topics chosen for the LDAmodel. The

training phase runtime grows like O(k5), which is the complexity

of the dominant ALS algorithm component.

Note that the gains we receive from Spectral LDA on the PubMed

Abstracts dataset are lower, in part, due to increased document

count which contributes to the complexity of constructing the

emperical data tensors, M1,M2, and M̃3(W ,W ,W). Another con-

tributing factor is PubMed’s (abstracts) shorter average document

length. Spectral LDA benefits from long documents because it only

examines word frequencies whereas the Gibbs sampling algorithm

underlying MALLET operates on raw word counts which explains

why MALLET’s running time improves on this data set.

4.2 Topic Coherence (PMI)
To evaluate the quality of the output topics from the training

phase we use the pointwise mutual information (PMI) measure-

ment, which has been demonstrated to be a consistently accurate

representation of topic scoring under human analysis [15]. While

perplexity (PWLL) is a common metric for evaluating topic models

it is not as well correlated with human judgement as PMI. Our ex-

periments comparing PWLL scores against word clouds generated

from output topics confirms these findings.

Given a word pair (wi ,w j) the PMI is given by,

PMI(wi ,w j) = log

p(wi ,w j)

p(wi)p(w j)
. (16)

1
we perform a stratified sampling based on length, i.e we divide the lengths of docu-

ments into 10 buckets, and pick documents from each bucket in their proportion in

the original corpus

ParLearning 2019, August 2019, Anchorage, Alaska, USA
Chris Swierczewski, Sravan Bodapati, Anurag Beniwal, David Leen

Animashree Anandkumar

101 102

Number of Topics

0

20

40

60

80

100

120

Ti
m
e
(m

in
ut
es

)

Training + Inference on NYTimes Dataset
Spectral LDA
Mallet

101 102
Number of Topics

0

10

20

30

40

50

60

Ti
m
e
(m

in
ut
es
)

Training + Inference on PubMed Dataset
Spectral LDA
Mallet

Figure 4: Comparison of timings between spectral LDA and
MALLET as a function of topic count (log scale). Training
and inference is separable in Spectral LDA. The dark blue
region shows the amount of time spent on inference.

101 102

Number of Topics

1.55

1.60

1.65

1.70

1.75

PM
I

Topic Coherence on NYTimes Dataset
Spectral LDA
Mallet

Figure 5: Comparison of pointwise mutual information
(PMI) between Spectral LDA and MALLET as a function of
topic count (log scale).

The topic coherence is given as a sum of PMI scores across all words

appearing in a given topic,

Coherence(βk) =
∑

1≤i<j≤V
PMI(wi ,w j | βk), (17)

where p(wi |βk) = (βk)i . The total topic coherence is given as the

average coherence across all topics.

Figure 5 shows Spectral LDA vs. MALLET PMI score of the topics

discovered in the NYTimes dataset as a function of topic count. The

two methods are approximately equal with Spectral LDA taking a

slight advantage. The main result based on these findings is that

Spectral LDA can recover similar quality topics at a fraction of the

required time.

5 CONCLUSION
In this paper we presented the theory and implementation details

behind the Spectral LDA , a highly efficient and scalable algorithm

for topic modeling. Its development resulted in contributions to the

ML packages, MXNet and Tensorly. Finally, we and demonstrated

that our algorithm is faster than MALLET with comparable topic

quality.

While most of Spectral LDA is integrated with the MXNet frame-

work and runs in parallel the algorithm was only built to run on a

single machine. The next step is to use the MXNet KVStore to dis-

tribute the algorithm. Steps such as the construction of the empirical

data tensors are easily distributed. However, it is not immediately

clear what the optimal strategy would be to distribute the spec-

tral decomposition algorithm and an efficient solution will require

further research.

REFERENCES
[1] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y. Liu. A Spectral

Algorithm for Latent Dirichlet Allocation. Algorithmica, 72(1):193–214, 2015.
[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of

machine Learning research, 3(Jan):993–1022, 2003.
[3] J. D. Carroll and J. J. Chang. Analysis of individual differences inmultidimensional

scaling via an N-way generalization of Eckart-Young decomposition. Psychome-
trika, 35:283–319, 1970.

[4] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto

the l 1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279. ACM, 2008.

[5] T. L. Griffiths and M. Steyvers. Finding Scientific Topics. Proceedings of the
National Academy of Sciences, 101(suppl 1):5228–5235, 2004.

[6] R. A. Harshman. Foundations of the PARAFAC procedure: Mod-

els and conditions for an “explanatory” multi-modal factor analy-

sis. UCLA Working Papers in Phonetics, 16:1–84, 1970. Available at

http://publish.uwo.ca/h̃arshman/wpppfac0.pdf.
[7] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products .

Journal of Mathematics and Physics, 6:164–189, 1927.
[8] T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications. SIAM

Review, 2009.
[9] J. Kossaifi, Y. Panagakis, and M Pantic. TensorLy: Tensor Learning in Python.

ArXiv e-print, 2016. https://arxiv.org/abs/1610.09555.
[10] J. Lee. Spectral LDA on Spark.

https://github.com/Mega-DatA-Lab/SpectralLDA .

[11] J. Lee and C. Swierczewski. MXNet: Khatri-Rao Operator, 2017.

https://github.com/apache/incubator-mxnet/pull/7781.
[12] M. Lichman. UCI Machine Learning Repository - Bag of Wrods Data Set, 2013.

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words .

[13] A. K. McCallum. Mallet: A machine learning for language toolkit.

http://mallet.cs.umass.edu, 2002.

[14] C. Musco and C. Musco. Randomized Block Krylov Methods for Stronger and

Faster Approximate Singular Value Decomposition. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, pages 1396–1404, Cambridge, MA, USA, 2015. MIT Press.

Large Scale Cloud Deployment of Spectral Topic Modeling ParLearning 2019, August 2019, Anchorage, Alaska, USA

[15] David Newman, Jey Han Lau, Karl Grieser, and Timothy Baldwin. Automatic

evaluation of topic coherence. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 100–108. Association for Computational Linguistics, 2010.

[16] M. Rajih, P. Common, and R. A. Harshman. Enhanced Line Search: A Novel

Method to Accelerate PARAFAC. SIAM J. Matrix Anal. & Appl., 30(3):1128–1147,
2008.

[17] V. Sharan and G Valliant. Orthogonalized ALS: A Theoretically Principled Tensor

Decomposition Algorithm for Practical Use. Proceedings of the 34th International
Conference on Machine Learning, 70, 2017.

[18] Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka. Tensor contractions with

extended blas kernels on cpu and gpu. In High Performance Computing (HiPC),
2016 IEEE 23rd International Conference on, pages 193–202. IEEE, 2016.

	Abstract
	1 Introduction
	2 Topic Modeling and Tensors
	2.1 Latent Dirichlet Allocation
	2.2 Spectral Decomposition
	2.3 Spectral LDA
	2.4 Whitening

	3 Implementation
	3.1 Computing M1 and W From M2
	3.2 Constructing the Whitened 3 Tensor
	3.3 Computing the Spectral Decomposition
	3.4 LDA Inference

	4 Experiments and Performance
	4.1 Running Times
	4.2 Topic Coherence (PMI)

	5 Conclusion
	References

