
Expedite Neural Network Training via Software Techniques
Fangzhe Chang

Nokia Bell Labs, USA
fangzhe.chang@nokia-bell-labs.com

Dong Liu
Nokia Bell Labs, USA

d.liu@nokia-bell-labs.com

Thomas Williams
Nokia Bell Labs, USA

thomas.williams@nokia-bell-labs.com

Thomas Woo
Nokia Bell Labs, USA

thomas.woo@nokia-bell-labs.com

ABSTRACT
Training of Deep Neural Networks (DNN) can take a long time
and correspondingly incurs a fair amount of cost, especially as the
DNN models grow in complexity and training datasets become ever
larger. The de facto approach to reducing training time is to split the
data minibatches across multiple hardware accelerators (GPUs and
TPUs) and train the model in a distributed fashion. Recent advances
have allowed the use of hundreds to thousands of accelerators in
training to radically reduce training time for some models. This
practical paper studies software techniques for expediting neural
network training without requiring a large number of expensive
hardware accelerators. These techniques include: (1) local accumu-
lation training to decrease the number of synchronization points;
(2) heterogeneous distributed training where faster workers do not
have to wait an unnecessarily long time for the slower workers
at synchronization points; (3) online cooling until early stop where
batch size and learning rate are adjusted to gradually cool down
training until an early stop point. These techniques can be applied
in isolation or combined together. Our experiments show that in-
tegrated application of these techniques can reduce the overall
training time by 30%.

CCS CONCEPTS
• Computing methodologies → Distributed artificial intelli-
gence; Machine learning; • Computer systems organization
→ Neural networks.

KEYWORDS
Machine Learning, Neural Network Training

1 INTRODUCTION
Deep Neural Network (DNN) models can learn from (i.e., be trained
with) expert knowledge, usually in the form of labeled data. Since
they have the potential to adapt to implicit data patterns and chang-
ing conditions in real-world problems, DNN models are becoming
increasingly popular, spreading from the traditional areas of vision
and natural language processing to a wider range including voice
recognition and interaction, machine translation, self-driving cars,
and even conventional software functions such as indexing [14].
As the DNN models grow in complexity and datasets become ever
larger [2, 9], training can take a very long time and correspondingly
incur a fair amount of cost.

Long training time has become the key hurdle for productivity
of deep learning development. Just like instantaneous compilation
has transformed traditional program development, we envision

that rapid training of DNN models can substantially transform
deep learning development and its adoption. At this point, the
use of DNN and in general machine learning has rapidly moved
beyond early exploration and reached the application phase for
many organizations. In this phase, it is important to start developing
a systematic or a cookbook approach to expedite DNN training,
thus making DNN development accessible to early adopters.

Recent advances have allowed the use of hundreds to thousands
of accelerators in training to radically reduce training time for
some models. For instance, the ResNet-50 model was originally
trained over the ImageNet1K [21] dataset on a single machine (with
8 P100 GPUs) for 29 hours [8], which was reduced to an hour [7]
on 32 machines (each with 8 P100 GPUs, a total of 256 P100 GPUs)
connected by a 50Gb Ethernet, and to half an hour [23] on half a TPU
pod (256 tensorcores), and most recently to just a few minutes [12]
on 256 machines (each with 8 P40 GPUs, a total of 2,048 P40 GPUs)
over a 100Gb Ethernet. Noticeably, most of the gains are made due
to progress in utilizing a large number of hardware resources.

Despite these results, there are still significant practical hurdles.
(1) In reality, access to a large number of homogeneous GPUs

is expensive and may not always be available. Other than
a few web-scale companies, most organizations only have
a handful of multi-GPU servers. Many heroes experiments
conducted on training time reduction used large dedicated
GPU farms, the results of which may not apply directly on
more modest on-premise clusters or cloud-based clusters.

(2) GPUs are undergoing rapid innovation. For instance, Nvidia
has released three major GPU architectures (Pascal, Volta,
Turing) in just over two years. As an enterprise acquires GPU
resources over multiple purchase cycles, their environment
is bound to have a mixture of newer and older GPUs and
machines. All training results reported above assume the use
of homogeneous GPUs. In real life, it is critical to be able to
use any GPU mix for training.

(3) There have been many papers on different techniques in
optimizing training, covering different areas: hyperparam-
eter search, freezing, etc. Most are focused on exploring a
single technique. There is a lack of study of how different
techniques can be used in combination effectively. More
specifically, rather than individual techniques, the key is to
understand an overall training schedule. More specifically,
what techniques to apply at what time as training progresses.
It is more useful to develop a cookbook approach integrating
state-of-the-art techniques to create an effective training
schedule, especially one that can monitor training progress
and dynamically adjust training hyperparameters.



ParLearning 2019, August 5, 2019, Anchorage, Alaska Fangzhe Chang, Dong Liu, Thomas Williams, and Thomas Woo

This practical paper studies software techniques to expedite
neural networks training without requiring a large number of ho-
mogeneous GPUs. Our objective is to significantly reduce training
time while still maintaining the quality (e.g., accuracy, bleu, etc.)
of the training. It has been reported [11] that around 75% of jobs
reached within 0.1% of their best model with just 40% of training
epochs. This points out the likelihood to reduce a large portion of
training time through controlling training schedules. In particular,
we focus on the following software techniques and demonstrate
how they help reduce training time.

Local accumulation training where gradients frommultiple
batches are accumulated before sending for synchronization.
Local accumulation training essentially forms large batch
sizes beyond what can fit in the memory of an individual
GPU/TPU. Consequently it reduces the number of synchro-
nization points for each epoch. It also statistically reduces
idle time caused by the variance in compute time on partici-
pating devices due to different sample sizes (e.g., lengths of
sentences).

Heterogeneous distributed training where faster workers
do not have to wait unnecessarily long time for the slower
workers at the synchronization points, using proportional
batching and local accumulations.

Monitoring and cooling until early stop where the batch
sizes and learning rates are adjusted according to monitored
metrics (e.g., training accuracy and test accuracy). It gradu-
ally cools down the magnitude of updates, until the updates
no longer help improve the metric as expected.

Our techniques are specifically designed to address the practical
issues raised earlier about DNN training, and we study them in
combination in a realistic training environment.

The key contributions of this paper are as follows.
(1) We experiment with using local accumulation as a method

to reduce training time by allowing large batch sizes without
being limited by the memory capacity of the GPUs.

(2) We use proportional batching and local accumulation for
maximizing the training throughput when training on a
heterogeneous set of GPUs and machines.

(3) We generalize the plateau detection algorithm over multiple
quality metrics for online adjustment of batch size as well
as learning rate, and for early stop decision.

(4) We study the performance of these techniques experimen-
tally across multiple models. We demonstrated effectiveness
and compatibility of these techniques when used together.
Our experiences show that integrated use of the above tech-
niques can reduce the overall training time by 30%.

The paper is organized as follows. Section 2 discusses existing
work on expediting DNN training. Section 3 describes in detail the
software techniques we investigate in this paper. The experimental
results are reported in Section 4. Section 5 summarizes the paper.

2 RELATEDWORK
It is intriguing to reduce the training time without sacrificing the
quality of the trained model. Many efforts have aimed at speeding
up DNN training. The most widely adopted approach is to divide
the training up among many hardware accelerators (GPUs or TPUs)

that can process the training using data parallel synchronous SGD.
To be able to exploit a large number of GPUs, one needs a large
batch size. However, the generalization accuracy of the resulting
model has suffered when a large batch was used in training [13].
Recent advances have demonstrated a number of techniques such
as warm-up [7] and LARS [26] to overcome this limitation, though
some of these techniques require extra support from the underlying
framework or modification to the original application. Combina-
tions of those techniques have allowed models like ResNet-50 to be
trained with batch sizes 8K [7], 16K [23], 32K [1, 5, 26], and 64K [12],
using hundreds to thousands of GPUs. In comparison, this paper
focuses on software techniques (e.g., local accumulation training)
for expediting training even without large number of hardware
resources.

In general the amount of computation needed for training using
SGD is fixed. Although there are known methods for reducing the
training computation by early stop [19]. It has been observed [11]
that in practice around 75% of trainings only need 40% of epochs to
get a model within 0.1% of their best. Early stopping will greatly
save the amount of computation for such jobs. The ’Early Stopping,
but When?” paper [19] proposed three classes of stopping criteria.
More complex algorithms were also introduced, e.g., in [6, 15],
which will incur significant overhead if used online.

When spreading training among multiple machines, heterogene-
ity in hardware capabilities may cause idle time at the synchro-
nization point. Use of local accumulation to reduce the variance in
workload between different workers has been independently pro-
posed in [18]. In addition, we also investigate using proportional
batch sizes for bridging the gaps among distributed workers.

Freezing [3, 4, 20] have been shown to reduce training time
and prevent overfitting when the layers are frozen at the right
time. As reported in [20], neural networks broadly converge from
the bottom up. One can successively freeze lower layers during
training, avoiding all computation needed for deriving gradients
of and for updating the weights of the frozen layers. On the other
side, freezing a layer prevents adjusting its parameters to more
suitable values, potentially leading to models of degraded quality.
We experimented extensively with this technique and found out
the time saving often came with a non-negligible degradation on
training quality. We realized that the subtle changes to the bottom
layers even at a late stage could be significant to some model.

We have not investigated all the software techniques that can
potentially reduce training time. Some of them are well accepted
practices, including 1) use of half precision or mixed precision [17]
training, which allows more parallel computation inside GPUs
and expands the number of samples that fit into GPU memory; 2)
use of efficient communication primitives during updates, such as
ALL_REDUCE and its various implementations, compression or
quantization of gradients; 3) optimizing data pipeline to overlap
data fetching and computation, etc.

3 SOFTWARE TECHNIQUES FOR REDUCING
TRAINING TIME

We focuses on the following software techniques for reducing train-
ing time: local accumulation, proportional batch for heterogeneous
training, and online cooling schedule until early stop.



Expedite Neural Network Training via Software Techniques ParLearning 2019, August 5, 2019, Anchorage, Alaska

3.1 Local Accumulation Training
When training with Stochastic Gradient Decent (SGD), at each
iteration a subset (i.e., mini-batch) of samples are processed, the
corresponding average gradients are scaled by a learning rate, and
the resulting updates are applied on model parameters. In imple-
mentation, the subset is further split among participating GPUs.
After each GPU finishes processing its share, the gradients from all
workers are gathered together, essentially forming a synchroniza-
tion point. In local accumulation training, a worker accumulates
the gradients for a number (say k) of iterations before synchro-
nizing with other participants. As a result, the mini-batch size is
conceptually increased by k fold and the number of synchronization
points reduced by a factor of k in an epoch. Fewer synchronization
means not only shorter waiting time for each other, but also smaller
communication overhead for transferring gradients and parameter
values. The training time will be accordingly reduced.

Local accumulation can be viewed as a software technique that
allows increasing the effective batch size beyond the hardware
limits of the number of available GPUs and capacity of GPUmemory.
Accordingly it suffers from the same drawbacks as large batch
training: the reduction in generalization accuracy in the trained
model [7, 13]. Similar techniques, such as gradual warm-up can be
attempted to alleviate the problem.

When the batch size is increased via local accumulation, learning
rate may require a corresponding change. Different rules have been
suggested. A linear increase of the learning rate with respect to
batch size was proposed in [16] “to keep the mean SGD weight
update per training example constant”. A square-root rule was
instead suggested in [10] to “make sure that the covariance matrix
stays the same for all mini-batch sizes”. Nevertheless, it has been
observed [22] that neither the linear rule nor the square-root rule
may be appropriate and suggested to search for a proper learning
rate for each different batch size instead.

Figure 1 and 2 illustrate the practical difficulty of relating varying
of batch sizes to that of learning rates, using the training ResNet-20
v2 on CIFAR 100 as example. Both figures contain a common data
point, corresponding to the hyperparameter setting of batch size
1024 and learning rate 1. Either batch size in Figure 1 or learning
rate in Figure 2 is doubled (or halved) for consecutive data points.
As one can see, these two curves do not exactly match in shape.
In particular, changing learning rate is more sensitive to causing
divergence than changing batch sizes. Doubling batch size is not
always equivalent to halving learning rate as proposed by [23].

Figure 3 normalizes the above two curves with respect to the
linear scaling rule (see the solid ‘BS LINEAR’ and ‘LR LINEAR’
curves) and the square-root scaling rule (see the dotted ‘BS SQRT’
and ‘LR SQRT’ curves). As one can see, there are ranges for each rule
to be applicable. The linear rule applies when the two solid curves
overlap well (for the per-sample learning rate between 0.00025 and
0.002). The square-root rule works well when the dotted curves
(i.e., the lr/sqrt(bs) ratio) are between 0.016 and 0.3. This means
that the linear rule and square-root rule may only work for parts
of the hyper-parameter space, even when the hyper-parameters
don’t change during the training. In practice, learning rates often
cool down during trainings, making it harder to choose a proper
learning rate schedule. We look into this issue in Section 3.3.

Figure 1: Double batch size when training on CIFAR 100

Figure 2: Halve learning rate when training on CIFAR 100

Figure 3: Linear rule and square-root rule are suitable for
specific regions

3.2 Heterogeneous Distributed Synchronous
Training

When training a model using data parallel synchronous SGD, all
participating workers synchronize after processing a minibatch of
samples to ensure gradients are collected and applied to parameters
before obtaining the new weights and proceeding with the next
iteration. Current practices of distributed synchronous training use
similar types of machines and GPUs, e.g., as in [7, 23]. In such set-
tings, all workers get an equal share of the minibatch and complete
the computation around the same time at each iteration. Therefore,



ParLearning 2019, August 5, 2019, Anchorage, Alaska Fangzhe Chang, Dong Liu, Thomas Williams, and Thomas Woo

Figure 4: When training a TensorFlow Inception model on
ImageNet, heterogeneous GPUs (GTX 1080 Ti, Tesla P100,
and Tesla V100) differ in throughput as batch size varies.

a worker tends to wait only very little time for other workers to
be ready for synchronization. However, as newer generations of
GPUs are introduced to market while the old ones are still in use,
it becomes ever more likely that the GPUs available in a cluster
are heterogeneous. They differ in the number of cores, tensorcores,
amount of memory, the presence of NVLink, etc. As shown in
Figure 4, three types of GPUs can accommodate a minibatch of
different sizes and yield different throughputs for a same model.

Figure 5: When using equal batch sizes in the distributed
synchronous training of MxNet Inception model, V100
GPUs finishes processing the batches sooner (e.g., by 0.2s for
batch size 64) than P100 and 1080 Ti GPUs.

Existing frameworks such as TensorFlow and MxNet are agnos-
tic to the different GPU capabilities and allocate equal share of a
minibatch to them when the heterogeneous GPUs are used in a
distributed synchronous training. As a result, at the end of each
iteration a much faster GPU must wait for the slower ones to fin-
ish their computation. The faster ones cannot proceed before the
synchronization completes. As shown in Figure 5, a V100 GPU can
process a batch of 64 images in 0.2 second less time than a P100
GPU on average. This consequently leads to the more expensive
faster GPUs yielding the same throughput as the old slower GPUs,
as shown in Figure 6.

In heterogeneous distributed synchronous training, each partici-
pating worker is given the proportional amount of work so that on

Figure 6: Train MxNet Inception model. Waiting for slower
GPUs causes the faster GPU to deliver the same throughput
as the slower ones in the distributed training (right).

average they complete their computation at around the same time.
More specifically, the proportional amount of work can be in two
forms below or their combination.

Proportional Batch Each worker (or GPU) uses a micro (i.e.,
per worker/GPU) batch size proportional to its processing
capability.

Proportional Local Accumulation Each worker locally ac-
cumulates the gradients a different number of times pro-
portional to its processing power before each update (See
Table 7 for an example).

Figure 7: Use batch sizes proportional to the capability of
GPUs. More specifically, batch size 96 on a V100 and batch
size 56 on a P100 and on a 1080 Ti will make all the workers
to finish around the same time per iteration when training
the Inception model on ImageNet.

Figure 7 illustrates an approach for deciding the per-GPU batch
size in heterogeneous training: A V100 can be allocated 96 samples
whereas a P100 or 1080 Ti GPU can be given 56 samples in each
iteration so that all of them complete processing in about 0.4 second.
The proportional batching approach does not require that all the
samples (and their corresponding DNN graph) fit into GPU device
memory. When a share of minibatch is too big for the GPU memory,
it can be further broken down using multi-pass as in Section 3.1.



Expedite Neural Network Training via Software Techniques ParLearning 2019, August 5, 2019, Anchorage, Alaska

As a result, a faster worker not only can load more samples into
GPU memory at each iteration, but also can run more iterations
before every synchronization so that it does not have to wait for a
slower worker.

When the proportional batch approach requires a too large a
micro batch size to fit in the memory of its GPUs, one can use
the proportional local accumulation or a combination of both to
derive a proper setting that minimizes the waiting time at the
synchronization points due to GPU heterogeneity.

3.3 Monitoring and Cooling Until Early Stop
In order to reduce the training time while still maintaining quality
of the trained model, it is obviously important when to stop the
training—after the model has converged additional training will be
a waste. Stopping the training at the right moment not only saves
training time but also prevents overfitting. From the perspective
of simulated annealing, a training session typically consists of an
initial optional warm-up phase and a later cool-down phase. In the
cool-down stage the magnitude of updates is reduced to ensure
progress and convergence. Therefore, deciding when to stop and
when to cool down properly is critical to shortening training time.

Cooling can be achieved either by decaying learning rate ex-
plicitly or automatically via an optimizer, or by increasing batch
size [23]. The advantage of increasing batch size is that it decreases
the number of synchronizations during the training, although the
extent of its cooling effect is capped by the size of the dataset and
very large batch sizes could lead to degraded model quality.

Decidingwhen to cool down andwhen to stop can be challenging.
The on-plateau approach (e.g., ReduceLROnPlateau in Keras) mon-
itors the progress of a training session and reduces the learning
rate once a monitored quantity plateaus. We generalize the on-
plateau algorithm to monitor both training and evaluation metrics
(e.g., training accuracy and validation accuracy), support multiple
actions, and allow flexible control over the plateau conditions. In-
tuitively, it compares expectation and actual progress made over a
time period. When not enough progress is observed, the training
should be further cooled down or stop.

More specifically, the TracEO algorithm makes cooling and early
stop decisions based on a train metric and a validation metric.
It could be used with only one metric or expanded to support
more metrics. In practice, a variety of metrics can be metered for
progress, including loss, training metrics (e.g., accuracy, perplexity),
validation metrics, and test metrics. These metrics change over time,
though often not monotonically. Loss and training metrics tend to
be smooth, whereas test metric and validation metric can be jumpy.
Therefore, the algorithm monitors the progress of the training
metric and range of change for the validation metric, and compares
them with given expectation. The expectation often decays over
time since typically progress and oscillation reduce as training
gradually converges. Multiple actions can be triggered when lack
of progress in training metric is noticed or when the validation
metric is flat. That is,

Increase batch size up to a given upper bound, e.g., 10% of
the dataset [23].

Decrease learning rate until a given lower bound.

Stop when the most recent cooling action above fails to bring
non-negligible changes, or the target metric is reached, or a
number of epochs (steps) is reached.

The challenges for this kind of algorithms lies in their sensitivity
to controlling parameters such as size of time window and amount
of oscillation to be considered as flat. The TracEO algorithm takes
several measures: (1) It further smooths out the training metric
using a running average. (2) It takes the average progress of all
epochs within the window instead of the maximum improvement
usually used in the on-plateau approaches. (3) It calculates flat-
ness of the validation metric elastically. The time window can be
stretched longer as long as the average, top, and bottom values
have not changed significantly. As a result, decision points will be
less sensitive to the exact controlling parameters of the algorithm.

4 EXPERIMENTS
Currently the underlying frameworks such as TensorFlow and
MxNet do not yet support local accumulation or heterogeneous
batch transparently. We modified the training applications indi-
vidually to support both features and the online control algorithm
where necessary. For local accumulation, gradients need be accu-
mulated and reset locally on each GPU device every given number
of steps. MxNet provides partial support of it—accumulating gra-
dients in the ‘add’ mode. For heterogeneous batch, we need to
ensure that all participating workers go through equal number of
synchronization points in every epoch despite processing different
number of samples. In particular we modified how training samples
were partitioned and shuffled among the workers in the underlying
framework. However, we believe such functions are generic across
neural network models and applications and can be conveniently
added into the frameworks in the future.

The experiments in this section used the ResNet model [8] and
the Inception model [24] for image classification and the Trans-
former model [25] for machine translation. The models were taken
from TensorFlow benchmark code and from examples included in
the MxNet and its gluon-nlp package. We adopted other settings
built into the packaged examples and did not change the source
code to apply techniques suggested in literature [1, 12, 26] that
could improve the quality of the resulting models. When a check-
point of the model was written at the end of each epoch, the time to
write the checkpoint was included in the duration measurements.

4.1 Local Accumulation Training
We studied the effect of local accumulation on speeding up training
using the ResNet-50 model and the Transformer model on the
TensorFlow and the MxNet frameworks, on single machines and
on two machines across network.

We first used local accumulation to train the TensorFlow ResNet-
50 model on ImageNet1K [21]. The experiments were run on a
server with 8 NVIDIA Tesla V100 GPUs with 16GB of memory
each connected by NVLink. We used ALL_REDUCE rather than a
parameter server and set the hyperparameters following [7]. For
instance, we gave each GPU a batch size 32 as per [7] even though
the V100 GPU can process more samples concurrently. Table 1
shows the results as local accumulation varied from 1 to 128 and
the corresponding batch size increased from 256 to 32K. In general



ParLearning 2019, August 5, 2019, Anchorage, Alaska Fangzhe Chang, Dong Liu, Thomas Williams, and Thomas Woo

Algorithm 1 TracEO Training Algorithm
Input: bs, lr, bsmax, lrmax, warm, obsv, epsilon, dir, cool, smooth, stretch, tgt
Training loop:
1: progress = λ a,b: max(b - a, 0) if dir==‘up’ else max(a - b, 0)
2: procedure flat(e, vals, obsv, epsilon, stretch) ▷ flatness of vals in window obsv, extensible up to a stretch factor
3: mn, av, mx = min, avg, max of {vals[i] | i ∈ (e - obsv, e]} ▷ min, average, max of val metrics over the obsv window
4: if mx - mn < epsilon then
5: return True ▷ height of bounding box is negligible
6: extend = (mx - mn) / epsilon; w = extend × obsv ▷ consider the extended window
7: if extend ≤ stretch and w ≤ e then
8: mne, ave, mxe = min, avg, max of {vals[i] | i ∈ (e - w, e - obsv]} ▷ min, average, max over the extended window
9: return mxe ≤ mx + epsilon and mn - epsilon ≤ mne and av - epsilon ≤ ave ≤ av + epsilon
10: ▷ flat if top/bottom/mean lines have not changed much over extended period despite recent oscillation
11: return False
12: for e in 0..epochs do
13: train for 1 epoch with (bs, lr), yielding training metric trn and validation metric val
14: vals[e] = val; trns[e] = smoothed(trn, smooth) ▷ exponentially smooth out trn with the factor smooth
15: if e < warm and lr < lrmax then
16: warm up lr til lrmax
17: continue
18: ng = avg {progress(trns[e - obsv], t) | e - obsv < t ≤ e} < epsilon or flat(e, vals, obsv, epsilon, stretch)
19: if (target tgt is reached) or (ng and sincelast) then
20: break ▷ stop if target is reached or no good results has been observed since the last cooling
21: if ng then
22: cool down by increasing batch size bs (up to bsmax) and decaying learning rate lr by a combined factor of cool
23: sincelast = True
24: optionally decay epsilon and skip execution of lines 19–24 for a few (e.g., obsv/2) epochs after each cool-down
25: else
26: sincelast = False

larger local accumulation reduced training time, but with a cost
on the accuracy of the modes. The top-1 validation accuracy of
increasingly larger batches gradually become lower.

Table 1: Train TensorFlow ResNet-50 with local accumula-
tion (LA)

batch (la) accuracy(%) time(h) speedup(%)

256 (1) 75.29 18.33
512 (2) 75.38 17.90 2.33
1k (4) 75.31 17.33 5.44
2k (8) 74.84 17.73 3.24
4k (16) 74.83 16.04 12.47
8k (32) 74.61 16.35 10.79
16k (64) 72.50 15.57 15.02
32k (128) 68.11 15.59 14.93

Figure 8 depicts per-epoch accuracy in details. A batch size 4K
(i.e., local accumulation 16) can reduce the training time by about
10% with a sacrifice of less than 0.5% accuracy. The training updates
(i.e., synchronizes) 5004 times in each epoch for batch size 256,
which is reduced to 312 times for batch size 4K. The decrease in
synchronizations per epoch reduces the training time. The synchro-
nization overhead is low when training on the GPUs of a single

Figure 8: Accuracy per epoch for ResNet-50 (v1) on Ima-
geNet1K.

host and using ALL REDUCE over NVLink high speed intercon-
nect. Therefore, this result should be considered the lowest level
speed-up that could be achieved. Involving more GPUs on multiple
hosts in the training will magnify the network delays associated
with the synchronization and result in larger speed-ups.

We next experimented with varying batch sizes as per [23]: In-
creasing batch size from 8K to 16K as a way to cool down the



Expedite Neural Network Training via Software Techniques ParLearning 2019, August 5, 2019, Anchorage, Alaska

training after 30 epochs. In this experiment, we had to restart the
TensorFlow worker and reload the checkpoint to effect the batch
size change. The time to restart the worker (about 130 seconds) was
included in the duration calculations in Table 2. It shows that large
accumulations and large batch sizes can be used as a method of
cooling down and at the same time reducing training time. How-
ever, one need to weigh the time saving against the loss of quality
to obtain a suitable local accumulation number for the training.

Table 2: Train ResNet-50 with varying batch sizes.

batch accuracy(%) time(h) speedup(%)

8k–16k 74.64 16.25 11.19
8k–32k 74.12 14.95 18.41

We also investigated the effect of local accumulation using a
second Transformer model. Table 3 shows the training of the Ten-
sorFlow Transformer (big) model on eight V100 GPUs on a single
machine over the WMT17 English to German news commentary
dataset. It used the Lazy Adam Optimizer (β1 0.9, β2 0.997). The
learning rate was linearly warmed up in 64000 steps until reaching
the factor 4.0, and then reduced by 1/sqrt(steps) at every step. The
original implementation stores variables in the IndexedSlices data
structure, where each individual variable are updated separately
on synchronization. In the process of implementing local accumu-
lation, we copied it into a normal tensor. As a result, the baseline
training (i.e., local accumulation 1) was reduced from 26.38 hours to
12.36 hours. Further 9% reduction was achieved using accumulation
8 without much degradation of bleu score. The degradation could
be alleviated by adjusting the peak learning rate factor. For instance,
we a got better bleu score for the case of local accumulation 2 when
using a learning rate factor 2 instead of 4.

Table 3: Train TensorFlow Transformer Model on WMT17
(en2de) dataset.

Batch (la) time(H) bleu(%) speedup(%)

24k 26.38 29.32 original
24k (1) 12.36 29.15 baseline
48k (2) 11.49 28.87 7.04
96k (4) 11.27 28.69 8.82
192k (8) 11.14 28.12 9.87
384k (16) 11.10 23.99 10.19
768 (32) 11.59 24.67 6.23

In addition to TensorFlow, we further experimented with us-
ing local accumulation on a MxNet model—the Transformer model
taken from its gluon-nlp package. The trainingwas over theWMT2014BPE
dataset on 8 Volta GPUs and used the hyperparameters as suggested
by its documentation. Instead of fixing the accumulation at 16, we
doubled it from 1 to 64. We also extended the training from the
original 30 epochs to 60 epochs to make sure the best bleu value
was obtained. Accordingly the batch size grew bigger linearly with
local accumulation, from 21K (i.e., 8 × 2700 × 1) to 1350K (i.e., 8 ×

2700 ×64). The results were summarized in Table 4. When accumu-
lation number increased from 1 to 2, training time was surprisingly
reduced from 141 hours to 56 hours, mainly due to time saving in
the validation and test phase (i.e., not related to local accumulation).
The reduction in the training phase (due to local accumulation) was
about 11%. Another 10% reduction could be achieved for 4, 8, and
16 local accumulations. After that the training time stayed flat or
somewhat incremented. Since we did not fine tune learning rate
for the different batch sizes, the hand-picked learning rate for 16
accumulations was too large for the local accumulation 1 scenario.
As a result, it only achieved a test bleu of 1.13% (diverged). The
bleu score jumped to be more than 25% with 2 passes, reached
peaked 26.45% at 8 passes, and gradually degraded after that. This
means that a local accumulation in the middle range (e.g., 8 or 16)
should be selected with a purpose of both expediting the training
and obtaining better models.

Table 4: Train MxNet Transformer Model on wmt2014bpe
dataset

Per-GPU Batch time(H) bleu(%)

2700×1 141.93 1.13
2700×2 56.31 25.62
2700×4 50.16 26.21
2700×8 48.58 26.45
2700×16 48.19 26.34
2700×32 49.82 26.29
2700×64 55.20 25.34

Training speed-up by local accumulation should be more visible
in a multi-machine distributed environment.

Table 5 shows training TensorFlow ResNet-50 model on two
Tesla V100 machines connected by 100G Ethernet and using four
GPUs on each machine. The training time reduced as the batch
size increased. On the other hand, the accuracy level also decreased
noticeably for batch sizes larger than 8k. A sweet spot seemed to
be 8 accumulations (i.e., 2k batch size) which enjoyed almost 50%
speedup at the cost of a slight reduction on accuracy. Comparing
usage of local accumulation on a single machine, it is clear that local
accumulation will yield more benefits in a distributed environment
where communication and synchronization costs are higher.

Table 5: TrainResNet-50with local accumulation on twoma-
chines.

batch (la) accuracy(%) time(h) speedup(%)

256 (1) 75.35 45.40
512 (2) 75.35 33.93 25.3
1k (4) 75.33 30.30 33.3
2k (8) 75.07 22.91 49.5
4k (16) 74.49 20.36 55.2
8k (32) 73.44 19.48 57.1
16k (64) 72.66 18.12 60.1
32k (128) 69.10 18.27 59.8



ParLearning 2019, August 5, 2019, Anchorage, Alaska Fangzhe Chang, Dong Liu, Thomas Williams, and Thomas Woo

Similarly Table 6 shows training of the TensorFlow Transformer
(big) model on twomachines connected via 100Gbps Ethernet, using
four V100 GPUs on each machine. Training time was significantly
reduced when the number of local accumulations increased from 1
to 32. One can see a more than 70% saving on time when using at
least 8 accumulations, however, with a degradation of bleu scores.
This degradation was related to sticking with the same learning rate
factor 4. A new search for the hyper-parameters seemed necessary
for these larger batches. For instance, the linear scaling approach
gave us a bleu score 29.45 for 2 accumulations (i.e., 48k batch size)
and score 29.32 for 4 accumulations (i.e., 96k batch size), but a score
0.29 (i.e., diverged) for 16 accumulations. It is still an open question
what a best peak learning rate should be adopted when batch sizes
are scaled up using local accumulations.

Table 6: Train TensorFlow Transformer with local accumu-
lation on two machines.

batch (la) time(h) bleu(%) speedup(%)

24k (1) 45.22 29.37
48k (2) 30.62 28.96 32.29
96k (4) 18.75 28.56 58.54
192k (8) 13.35 27.85 70.48
384k (16) 11.27 26.58 75.08
768k (32) 10.00 24.65 77.89

4.2 Heterogeneous Distributed Training
We first used the Inception model implemented on TensorFlow and
MxNet to study the benefit of heterogeneous distributed training.
Figure 9 shows the throughput of training TensorFlow Inception
model over the ImageNet1K dataset on three heterogeneous GPUs:
1080 Ti, P100, and V100. Even though they could deliver a training
throughput of 131, 142, 220 images per second respectively when
training a separate model individually, they achieved a throughput
of 128 when three of them working together training a shared
model in the synchronous data parallel mode with each responsible
for 1/3 of 288 images in a minibatch. By adjusting the allocation
proportionally to their capabilities, we can allocate 76 samples of
the minibatch to 1080 Ti and P100 each and 136 samples to the
V100. As a result, a total throughput of 421 images per second was
observed, yielding a 9.6% improvement.

Figure 10 shows the scenario to train the MxNet Inception model
on two machines: one with four P100 GPUs and another with four
V100 GPUs. The two machines were capable of processing 563 and
960 images per second respectively. However, directly using them
under MxNet only gave a total throughput of 1112 due to equal
split of the minibatch among the eight GPUs. By giving V100 a
bigger share (100 samples per GPU) and P100 a smaller share (60
samples per GPU), a higher throughput 1450 images/s was achieved,
yielding a 30.4% improvement.

4.3 Combining Local Accumulation and
Heterogeneous Distributed Training

Some training environments will naturally call for adopting mul-
tiple software techniques together. For instance, when training a

Figure 9: Train TensorFlow Inception model over Ima-
geNet1K using three heterogeneous GPUs: V100, P100,
1080Ti. Left: three independent trainings. Center: Dis-
tributed synchronous training. Right: Distributed heteroge-
neous training.

Figure 10: Train MxNet Inception model on two machines,
one with four V100 GPUs and another with four P100. Left:
two independent trainings. Center: Distributed synchro-
nous SGD training when dividing the minibatch equally.
Right: Distributed training with proportional batching.

DNNmodel on a cluster of machines consisting of different number
or different types of GPUs, it is suitable to use both local accumula-
tion and heterogeneous training.

Table 7: Local accumulation (LA) and heterogeneous train-
ing of ResNet-50 on two V100 and two 1080 Ti GPUs

V100 Batch (la) 1080 Ti Batch (la) Time(h)

4K (64) 4K (64) 52.58
5K (80) 3K (48) 43.65
8K (128) 59.91

When twomachines are available, equippedwith two V100 GPUs
and two 1080 Ti GPUs respectively, one has to decide how to best
utilize them to train his model: either only using the faster machine
or using both machines. Table 7 shows the results of combining
heterogeneous batch allocation and local accumulation, training
ResNet-50 using twomachines homogeneously, using twomachines
heterogeneously, and only using the faster machine. In the first case,



Expedite Neural Network Training via Software Techniques ParLearning 2019, August 5, 2019, Anchorage, Alaska

both machines use 64 local accumulations and split a 8K minibatch
evenly, leading to a training time of 52.58 hours. In the second
case, by using both machines heterogeneously and giving more
work to the V100 machine, the training could be shortened to 43.65
hours, a reduction of 17%. In the third case, when only the fast
V100 machine was used, the training took 59.91 hours—the longest
time. It indicates that a weaker machine could still contributed to
the training positively and that local accumulation can be used to
bridge the gap between different types of GPUs.

Experiment on the Transformer model shows similar results.
Table 8 summarizes training of TensorFlow Transformer model
using different local accumulations on a machine with two V100
GPUs and another machine with two 1080 Ti GPUs, connected via
100Gbps Ethernet. Due to memory limitation of 1080 Ti, per GPU
batch size 2K was used. In the baseline setting, both GPUs used 12
local accumulations, resulting in a training time 14.67 hours. When
adjusted to 14 accumulations on V100 and 10 accumulations on
1080 Ti, the training time was shortened to 12.65 hours—about 14%
reduction. Obviously determining the suitable local accumulations
for different types of GPUs is important, since different choices
would yield different level of time reduction.

Table 8: Local accumulation (LA) and heterogeneous train-
ing using TensorFlow Transformer Model

la(V100) la(1080Ti) accuracy(%) time(h)

12 12 26.10 14.67
16 8 25.96 13.92
14 10 25.97 12.65

Even if all GPUs are of the same type, we could have heteroge-
neous resource availability, for instance, when 12 V100 GPUs are
available on on two machines connected by 100Gbps Ethernet—
one supplying 8 GPUs and another 4 GPUs. Table 9 shows three
different approaches of utilizing these resources for training the
MxNet Transformer model: (1) Use both machines equally (i.e., 4
GPUs each) as supported over-the-shelf by current framework, (2)
use only the 8 GPU machine, (3) heterogeneously split the work
among the two machines. The first approach of running two equal
workers on two machines resulted in a slow training of 32.06 hours.
Using only the 8 GPUs on the single machine was faster, taking
only 24.65 hours. By combining local accumulation and heteroge-
neous training, the same training was done in 20.76 hours with
comparable quality, a reduction of around 11 hours and 4 hours
with respective to first two approaches.

Table 9: Local accumulation (LA) and heterogeneous train-
ing using MxNet Transformer Model

GPUs la accuracy(%) time(h)

4 + 4 (homogeneous) 8 26.56 32.06
8 (one machine) 8 26.24 24.65
8 + 4 8 26.48 20.76

In the third approach, even though both workers used the same
number of local accumulations before synchronizing with the kvs-
tore (parameter server), the two per-worker batch sizes on these two
workers differs significantly. Given the original code only supports
training on a single machine, we made modifications to support
distributed heterogeneous training: All workers shuffle (using a
same sequence of seeds), split the dataset the same way, and are
allocated the number of batches proportional to the product of its
number of GPUs and its local accumulations (since all involved
GPUs are of the same type in this case). We argue that such func-
tionality can be easily incorporated into the underlying framework
such as TensorFlow and MxNet so that neural network training can
effectively leverage different types and different number of GPUs
dynamically available in a cluster.

4.4 Monitoring and Cooling Until Early Stop
We experimented with controlling the cooling and early stop pro-
cess using the TracEO algorithm on two MxNet models: ResNet-50
and Transformer.

Figure 11: Train MxNet ResNet-50 model: 90-epoch baseline
(Base) and using online algorithm (TracEO)

For training the ResNet-50 model, the TracEO algorithm ex-
pected a progress (or a fluctuation) of at least 0.002 within 5 epochs.
Figure 11 depicts the top-1 training error (i.e., complement of ac-
curacy) and validation error of this training compared with those
of the statically fine-tuned 30-60-80 cooling schedule used in the
literature. As the training cooled down by reducing the learning
rate by a factor of 10, significant decrease of both metrics were
observed. The TracEO algorithm chose different cooling points
than the static baseline schedule, and stopped the training after 72
epochs when no significant progress was seen after the cool-down.
As summarized in Table 10, it achieved a similar accuracy as the
static baseline schedule, accelerating the training by 20% at the cost
of 0.56% less accuracy.

Table 11 compares the training of the MxNet Transformer model
using its hand-crafted schedule (baseline) and the TracEO algo-
rithm. The baseline adjusted the learning rate at every step, with a
gradual warmup in approximately 5 epochs followed by the cool-
down scheme of keeping the learning rate inversely proportional
to square root of the step number to the 30th epoch. The training



ParLearning 2019, August 5, 2019, Anchorage, Alaska Fangzhe Chang, Dong Liu, Thomas Williams, and Thomas Woo

Table 10: Static vs TracEO schedule on MxNet ResNet-50

techniqe epochs accuracy(%) speedup(%)

Static 90 75.19
TracEO 72 74.63 20

took 24.65 hours and achieved a highest bleu score 26.24%. Since
the TracEO algorithm operates at the boundary of epochs instead
of steps, adjustment of hyperparameters is at a coarse granularity.
We increased the warmup stage to 8 epochs to avoid abrupt change
of the learning rate. We gave it a target bleu of 26%, similar to the
baseline outcome. During the training, the algorithm reduced the
learning rate by half when not enough progress was observed in the
previous 5 epochs. As a result, even though the training warmed
up slower than the baseline, it gradually caught up and was able
to reach a bleu score of 26.26% in 22.86 hours after 28 epochs. In
this sense, the algorithm was on par with the hand-crafted sched-
ule despite using the discrete cooling-down scheme at the coarser
granularity.

Table 11: Train Transformer Model using online algorithm.

techniqe epochs bleu(%) time(h)

Baseline 30 26.24 24.65
TracEO 28 26.26 22.86

5 SUMMARY
In this paper we studied several software techniques to expedite
training of DNNs, including use of local accumulation training,
proportional batching to bridge the resource heterogeneity, and
online monitoring and cooling algorithm for adjusting batch size
and learning rate and for making early stop decisions.

Each of the techniques uses a different approach to reducing
training time. Local accumulation training allows for large batches
which reduces the number of synchronizations. Proportional batch-
ing accelerates training when running on a heterogeneous set of
GPUs by avoiding the time that a faster GPU would need to wait for
a slower one to finish. The TracEO algorithm advances the training
schedule to the next change point when a setting appears to be
unproductive and stops the training when no further progress is
observed. The early termination of the training saves time over a
fixed schedule.

These software techniques can be easily implemented in the
DNN frameworks or applications. The techniques mostly comple-
ment each other as they all take different approaches to reducing
training time. We studied the performance of these techniques
experimentally. Our experiences indicated that integration of the
above techniques can reduce the overall training time by 10% to
30% with comparable training quality.

REFERENCES
[1] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. 2017. Extremely Large Mini-

batch SGD: Training ResNet-50 on ImageNet in 15 Minutes. In NIPS’17 Workshop:
Deep Learning at Supercomputer Scale.

[2] Amodei, D., et. al. 2016. Deep Speech 2 : End-to-End Speech Recognition in
English and Mandarin. In Proceedings of The 33rd International Conference on
Machine Learning, Vol. 48.

[3] C. Atkinson, B. McCane, and L. Szymanski. 2017. Increasing the accuracy of con-
volutional neural networks with progressive reinitialisation. In 2017 International
Conference on Image and Vision Computing New Zealand (IVCNZ).

[4] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston. 2017. Freeze-
Out: Accelerate Training by Progressively Freezing Layers. In 10th NIPSWorkshop
on Optimization for Machine Learning.

[5] V. Codreanu, D. Podareanu, and V. Saletore. 2017. Scale out for large minibatch
SGD: Residual network training on ImageNet-1K with improved accuracy and
reduced time to train. https://arxiv.org/abs/1711.04291

[6] David K. Duvenaud, Dougal Maclaurin, and Ryan P. Adams. 2016. Early Stop-
ping as Nonparametric Variational Inference. In Proc.of the 19th International
Conference on Artificial Intelligence and Statistics, AISTATS 2016.

[7] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. http://arxiv.org/abs/1706.
02677

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[9] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A.
Patwary, Y. Yang, and Y. Zhou. 2017. Deep Learning Scaling is Predictable,
Empirically. https://arxiv.org/abs/1712.00409

[10] Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, generalize
better: closing the generalization gap in large batch training of neural networks.
https://arxiv.org/abs/1705.08741

[11] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phanishayee, Wen-
cong Xiao, and Fan Yang. 2018. Multi-tenant GPU Clusters for Deep Learning
Workloads: Analysis and Implications. Technical Report MSR-TR-2018-13. Mi-
crosoft.

[12] Jia, X., et. al. 2018. Highly Scalable Deep Learning Training System with Mixed-
Precision: Training ImageNet in Four Minutes. https://arxiv.org/abs/1807.11205

[13] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2017. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. In International Conference on Machine
Learning (ICLR).

[14] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18).

[15] Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. 2017.
Early Stopping without a Validation Set. http://arxiv.org/abs/1703.09580

[16] Dominic Masters and Carlo Luschi. 2018. Revisiting Small Batch Training for
Deep Neural Networks. http://arxiv.org/abs/1804.07612

[17] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich
Elsen, David García, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In International Confer-
ence on Learning Representations (ICLR).

[18] M. Ott, S. Edunov, D. Grangier, and M. Auli. 2018. Scaling Neural Machine
Translation. https://arxiv.org/abs/1806.00187

[19] Lutz Prechelt. 1998. Early Stopping-But When?. In Neural Networks: Tricks of the
Trade. Springer-Verlag.

[20] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. 2017.
SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning
Dynamics and Interpretability. In Advances in Neural Information Processing
Systems. Curran Associates, Inc.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
Int. J. Comput. Vision (Dec. 2015).

[22] C. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. Dahl. 2018.
Measuring the Effects of Data Parallelism on Neural Network Training. https:
//arxiv.org/abs/1811.03600

[23] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. 2018. Don’t Decay the
Learning Rate, Increase the Batch Size. In International Conference on Learning
Representations (ICLR).

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2015), 1–9.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Advances in Neural Information Processing Systems 30. https:
//arxiv.org/pdf/1706.03762.pdf

[26] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018.
ImageNet Training in Minutes. In Proceedings of the 47th International Conference
on Parallel Processing (ICPP).

https://arxiv.org/abs/1711.04291
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/1705.08741
https://arxiv.org/abs/1807.11205
http://arxiv.org/abs/1703.09580
http://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1806.00187
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/1811.03600
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Software Techniques for Reducing Training Time
	3.1 Local Accumulation Training
	3.2 Heterogeneous Distributed Synchronous Training
	3.3 Monitoring and Cooling Until Early Stop

	4 Experiments
	4.1 Local Accumulation Training
	4.2 Heterogeneous Distributed Training
	4.3 Combining Local Accumulation and Heterogeneous Distributed Training
	4.4 Monitoring and Cooling Until Early Stop

	5 Summary
	References

